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Pulmonary fibrosis can develop in
association with genetic variants,
occupational and environmental exposures,
adverse reactions to numerous medications,
and many connective tissue diseases, and it
can also be idiopathic. Subclassifications of
pulmonary fibrosis are identified on the
basis of clinical presentations,
roentgenographic manifestations, and/or
histology. Wnt (Wingless/integrase 1)
activation of c-Jun and b-catenin has been
suggested as a unifying molecular pathway
resulting in fibrosis because c-Jun and
b-catenin upregulate expression of many
profibrotic factors (1), but little is known
about what activates these pathways or the
mechanism(s) explaining what appears to
be a self-sustaining temporal and spatial
progression of injury.

Ventilator-induced lung injury (VILI)
contributes to the mortality of the acute
respiratory distress syndrome by two
putative mechanisms that are not mutually
exclusive. The first is the mechanical stress
on epithelial cells that occurs as a result of
cyclical opening and closing of collapsed
alveoli and/or small airways during the
ventilatory cycle (termed “atelectrauma”).
The second is the mechanical strain on
epithelial cells in alveoli that are adjacent to
areas of airspace collapse when these alveoli

approach their maximum volume owing to
parenchymal interdependence (termed
“volutrauma”). This strain can also occur in
the absence of collapse as a result of high
transpulmonary pressures. Because airspace
collapse can occur during spontaneous
breathing as well as during mechanical
ventilation, we are defining VILI as
ventilation- rather than ventilator-induced
lung injury.

The purpose of this perspective article
is to summarize information supporting the
hypothesis that VILI can be a unifying
pathogenic process explaining the self-
perpetuating injury and progression of
pulmonary fibrosis (Figure 1). We review
studies demonstrating that alveolar collapse
has been a repeatedly observed pathologic
finding in pulmonary fibrosis, thereby
providing a setting in which VILI can
occur. We summarize studies showing that
in patients with pulmonary fibrosis, many
of the risk factors and genetic variants
related to the condition, as well as most of
the models used to study it, are associated
with surfactant abnormalities and/or with
AT2 (alveolar type 2) cell injury that could
result in surfactant abnormalities, thereby
providing an explanation for why collapse
develops. We also estimate the mechanical
strain resulting from volutrauma and

speculate about some potential clinical
implications suggested by this proposed
pathophysiology.

Atelectasis in Pulmonary
Fibrosis

If VILI contributes to pulmonary fibrosis,
then cyclical and/or permanent alveolar
collapse must be part of the pathology.
Burkhardt and Cottier (2) date the first
discussion of alveolar collapse in
pulmonary fibrosis to a German textbook
of pathology published in 1922 in which
Kaufmann (3), under the heading “Collapse
Induration,” noted that “if collapse of
alveoli persists for some time, expansion
may no longer be possible. The denuded
alveolar walls stick together and coalesce.
The alveoli are obliterated. In the interstitial
tissue proliferation of fibrous tissue ensues
resulting in cicatricial induration.”
Burkhardt (4) and Burkhardt and Cottier
(2) also cited multiple papers in the
German literature dating to the 1950s that
described collapse induration as an
important mechanism in the development
of pulmonary fibrosis.

Heppleston’s 1956 publication (5)
seems to have been the first to suggest that
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the airspace dilation seen with
honeycombing results from alveolar
collapse that produces locally exaggerated
traction during inhalation in adjacent lung.
Spencer (6) and subsequently numerous
other investigators (2, 4, 7–10) proposed
that the damage to alveolar lining cells that
occurs in pulmonary fibrosis reduces
surfactant, thereby increasing the tendency
for alveoli to collapse.

Katzenstein (7), studying acute
interstitial pneumonitis with electron
microscopy, found many partially
collapsed alveoli, others that were
completely collapsed with permanent
apposition of their septa, and still others
that were abnormally large and dilated.
She suggested that these changes were
early events in the pathophysiology of the
fibrosis and that the collapse could cause
or contribute to the decrease in lung
volume that occurs. In support of the
findings of Heppleston (5) noted above,

Katzenstein also suggested that the dilated
alveoli could explain the honeycombing
appearance in end-stage disease and
that it resulted from a “traction-like
phenomenon” around the permanently
collapsed alveoli. Snider and colleagues
(11) similarly attributed the airspace
enlargement seen in cadmium
chloride–induced lung fibrosis to
atelectatic lung regions generating forces
on adjacent uninvolved alveoli. Basset and
colleagues (12) subsequently reported the
same ultrastructural findings noted by
Katzenstein (7) in hypersensitivity
pneumonitis, idiopathic pulmonary
fibrosis (IPF), the fibrosis occurring in
conjunction with connective tissue
diseases, chronic eosinophilic pneumonia,
drug and radiation pneumonitis, and
chronic organizing pneumonia, and Myers
and Katzenstein (13) observed the same
alveolar collapse in a patient with usual
interstitial pneumonia (UIP).

Crouch (14) described the
pathophysiology of pulmonary fibrosis as
involving “alveolar collapse, in which
airspaces are transiently or permanently
obliterated secondary to apposition of the
alveolar walls” and, together with Burman
and colleagues (15), concluded that
honeycombing and the bronchiectasis seen
in the disease resulted from the alveolar
collapse with traction on the adjacent lung
tissue. Galvin and colleagues (8) suggested
that injury to the alveolar epithelium
altered surfactant and increased surface
tension, leading to collapse of smaller
alveoli into larger alveolar ducts, with the
collapsed alveolar walls becoming
permanently opposed in a self-perpetuating
fashion. They implicated alveolar collapse
as the main contributor to the progression
of fibrosis and also attributed the
preferential distribution of honeycombing
in the posterior basal lung segments to
alveoli in these regions being smaller at end
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Figure 1. Proposed pathogenesis of pulmonary fibrosis (PF) progression resulting from ventilation-induced lung injury (VILI). Surfactant abnormalities can
occur directly (e.g., surfactant gene variant and smoking) or indirectly as a result of alveolar type II cell injury, which, in turn, can also occur directly (e.g.,
radiation) and/or through endoplasmic reticulum (ER) stress (e.g., SP-A or SP-C mutations). Mechanotransduction can cause progression of fibrosis by
several mechanisms, including directly damaging cell membranes, changing the cytoskeletal structure, and/or activating ion channels. Each of these
effects activates different signaling pathways, resulting in production and release of cytokines and chemokines, ER stress, and/or epithelial–mesenchymal
transition (EMT). GERD=gastroesophageal reflux disease; TGF-b= transforming growth factor-b.
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exhalation and accordingly being the ones
most likely to collapse. The preferentially
basal distribution of honeycombing could
also be the result of the increased
transpulmonary pressure swings that occur
in this region during ventilation (16–18).

Leslie (19) defined recurrent tractional
injury as alveolar collapse and rapid
reopening during respiration of the basal
lobules. Although not referring to VILI per
se, she suggested that tractional injury
occurring over many years in response to
inherited or acquired surfactant
abnormalities could represent a unifying
hypothesis explaining the pathogenesis of
pulmonary fibrosis. The timing of changes
in surfactant and stereology after bleomycin-
induced pulmonary fibrosis led Lutz and
colleagues (20) to conclude that surfactant
abnormalities were the cause of the alveolar
collapse and collapse induration rather than
the effect of the fibrosis.

Todd and colleagues (21) reviewed a
previously recognized discrepancy between
what appears to be extensive collagen
deposition based on microscopic examination
of lungs with fibrosis and the results of a
number of studies that showed either no
increase or only a minor increase in total
collagen/unit of dry weight. They suggested
that alveolar collapse accounted for this
discrepancy because the opposed alveolar
walls would appear as fibrosis
microscopically. They agreed with earlier
investigators that the alveolar collapse was
responsible for overdistention of uninvolved
alveoli or airspaces adjacent to the collapse
and that this process accounted for the
anatomic heterogeneity of the fibrotic process.
Todd and colleagues (21) concluded that
collapse induration was a better explanation
for the pathophysiological findings than
dysregulated fibroblast proliferation leading to
excess matrix accumulation and that therapies
aimed at preventing collapse would more
likely be beneficial than treatments focused on
inhibiting fibroblast replication and matrix
accumulation.

Burkhardt (4, 22) proposed a
comprehensive pathophysiological schema for
the development of pulmonary fibrosis that
involved epithelial injury leading to surfactant
deficiency, alveolar collapse, collapse
induration, and overexpansion of adjacent
lung parenchyma, resulting in fibrosis. We
have modified Burkhardt’s schematic to
emphasize that 1) surfactant abnormalities
and/or injury to AT2 cells that would
predispose to surfactant abnormalities have

been described in patients with pulmonary
fibrosis, as well as with many of the risk
factors, models, and genetic variations
associated with pulmonary fibrosis, and 2) that
the atelectasis and collapse induration resulting
from the surfactant abnormality predispose
patients to VILI from stress (atelectrauma)
and/or strain (volutrauma) (Figure 1).

Type I cells are preferentially stretched
with lung inflation as type II cells are partially
protected by surfactant accumulation in
alveolar corners (although a number of
studies have examined the effect of strain on
inflammatory mediator release using isolated
type II cells). Stretching epithelial cells by
5–17% without causing damage can increase
cellular proliferation as well as production of
surfactant, prostacyclins, and numerous
other proinflammatory and profibrotic
cytokines. Multiple mechanisms by which
these effects occur have been described.
Lung strain activates mechanosensitive ion
channels, resulting in calcium influx and
activation of tyrosine kinases. Strain can also
cause calcium influx directly by disrupting
cell membranes, thereby activating
transcription factors (e.g., c-Fos), leading to
translocation of NF-kB (nuclear factor-kB)
to the cell nucleus. Strain activates integrins
in the cytoskeleton, which, in turn, control
NF-kB activity via effects on mitogen-
activated protein kinases, other transcription
factors, and NF-kB kinase (23). These
signaling pathways can lead to release of
inflammatory and profibrotic cytokines (e.g.,
TGF-b1 [transforming growth factor-b1],
TNF-a [tumor necrosis factor-a], IL-6, IL-8,
and IL-10), prostanoids (e.g., PGI2
[prostaglandin I2], PGF2a, PGD2, PGE2, and
thromboxane B2) via induction of
phospholipase A2, and chemokines (e.g.,
macrophage inflammatory protein and
macrophage chemotactic protein 1), thereby
causing ongoing fibrosis (24–31). Integrin
signaling is also linked with
epithelial–mesenchymal transition, c-Jun
signaling, and the Wnt/b-catenin pathway
(32–36). In a genome-wide study of patients
with pulmonary fibrosis, Fingerlin and
colleagues (37) identified variants of two
genes (DSP [desmoplakin] and DPP9
[dipeptidyl peptidase 9]) that counter the
effects of mechanical stress on cell adhesion,
and the DSP variant also alters the Wnt/b-
catenin pathway. Integrin signaling is also
associated with endoplasmic reticulum (ER)
stress, and markers for ER stress have been
found in response to mutations affecting SP-
A (surfactant protein-A), SP-C, and the

ABCA3 (ATP-binding cassette transporter
A3) gene; in many of the conditions
associated with pulmonary fibrosis,
including aging, viral infections, cigarette
smoke (CS) exposure, and inhalational
injuries; and in some animal models of the
disease (37–42). ER stress can also occur in
response to mechanical stress alone, as
would occur with VILI (15, 34, 42).

Surfactant and/or AT2 Cell
Abnormalities in Patients with
Pulmonary Fibrosis

Patients with Pulmonary Fibrosis
In the BAL fluid (BALF) obtained from
patients with pulmonary fibrosis, surfactant
phospholipids are decreased; the phospholipid
profile is altered; and SP-A concentrations are
markedly reduced (43–48). Günther and
colleagues (47) and Schmidt and colleagues
(48) also found that the surfactant obtained
from patients with IPF had markedly
impaired adsorption ability and reduced
surface tension–lowering activity.

Hermansky-Pudlak Syndrome
Hermansky-Pudlak syndrome (HPS) results
from abnormal formation or trafficking of
lysosome-related organelles. The phenotype
for HPS types 1 and 4 includes pulmonary
fibrosis, and a milder form of fibrosis occurs
in type 2. Humans with HPS and murine
models of HPS have impaired secretion of
lamellar bodies (LBs), resulting in giant LBs
appearing in AT2 cells; ER stress; and
decreases in surfactant phospholipids and
SP-B and SP-C, the two proteins most closely
linked to the surface tension–lowering
activity of surfactant (Table 1) (49–51).
Guttentag and colleagues (50) found that the
surface tension–lowering activity of
surfactant was not impaired in BALF
obtained in a mouse model of HPS at 10–15
weeks of age. Mahavadi and colleagues (51),
however, noted a marked reduction in
surface activity in BALF obtained at both
3 and 9 months, together with increases in
SP-B and SP-C in lung tissue and marked
progression of fibrosis between 3 and
9 months. They proposed that fibrosis
developed because of reduction in surfactant
and the resulting increase in surface tension
and attributed the difference in their results
from those of Guttentag and colleagues (50)
to studying the mice over a longer period of
time. This explanation may have relevance
to the observation that pulmonary fibrosis,
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particularly IPF, occurs much more
commonly in older patients (52) (see below).

Surfactant and/or AT2 Cell
Abnormalities Associated
with Risk Factors for
Pulmonary Fibrosis

Smoking
Cigarette smoking is a strong risk factor for
pulmonary fibrosis (53). Miller and
Bondurant (54) assessed surface tension
properties of rat lung extracts and BALF
before and after exposure to CS and found
that CS decreased the ability of surfactant
to stabilize alveoli. Cook and Webb (55, 56)
found that CS reduced hysteresis and
increased surface tension at low surface
areas. Surfactant phospholipids are
decreased in the BALF of smokers
compared with nonsmokers (57–63), and
Finley and colleagues (58) found that
phospholipid concentrations returned to
normal in as little as 2 weeks after smoking
cessation. Chronically exposing rats to CS
selectively decreases SP-B concentrations
(63). After exposing rats to 25 days of
inhaled CS, Le Mesurier and colleagues (59)
found areas of expanded alveoli that were
contiguous with areas of alveolar collapse

associated with increased interstitial
connective tissue and increased numbers of
LBs in AT2 cells.

Aqueous extracts of CS cause senescence
of AT2-like A549 cells and in AT1 and AT2
cells in vitro and in vivo (64). CS also causes
apoptosis of A549 cells (65) and inhibits
stimulated surfactant secretion from AT2
cells (66). Smokers also have increased
expression of MUC5B (mucin 5B) (67) and
shortened telomeres (68, 69) (see below).

Environmental Exposures
A number of epidemiological studies
document an association of metal or wood
dust pollution and other occupational
exposures with pulmonary fibrosis, and
mineral dust, components of pollution, and
other ultrafine particles alter the adsorption
and the surface tension–lowering activity of
surfactant (70–77). Organic dust exposure
reduces SP-A, SP-B, and SP-C expression in
epithelial cells by inhibiting thyroid
transcription factor 1 (see below) (78).

Microbial Agents
Epstein-Barr virus, cytomegalovirus, and
herpesviruses have been associated with
pulmonary fibrosis. The effects of these
viruses on surfactant have not been
investigated, but Epstein-Barr virus is known

to infect, replicate in, and cause apoptosis of
AT2 cells and to reduce AT2 cell proliferation
(39, 79–80), which could affect surfactant
production and/or recycling.

Gastroesophageal Reflux Disease
Whether gastroesophageal reflux disease is a
risk factor for pulmonary fibrosis is debated,
but patients with gastroesophageal reflux
disease have reduced SP-A and SP-D in their
BALF as well as alterations in their
surfactant phospholipid profile (81, 82).

Aging
Age is a key risk factor for developing IPF
because the majority of patients are not
diagnosed until their sixth decade (52). Although
there are no studies establishing a direct link
between aging and surfactant abnormalities,
considerable data link telomere length and
AT2 cell senescence to PF (see below).

Surfactant and/or AT2 Cell
Abnormalities Associated
with Genetic Variants
Causing Pulmonary Fibrosis

SP-A
Patients with SP-A mutations are reported
to be predisposed to developing pulmonary

Table 1. Surfactant and Surfactant-Regulator Functions

Surfactant Functions

SP-A Primarily functions as a collectin
Involved in formation of tubular myelin
Contributes to adsorption of phospholipids at air–liquid interface
Contributes to regulating phospholipid synthesis, secretion, and recycling in alveolar
macrophages

Counteracts the inhibitory effects of proteins on the surface tension–lowering function (recent
data question the effect of proteins on surface tension, however [165])

SP-B Stabilizes the phospholipid monolayer
Reduces surface tension by facilitating insertion of phospholipids into the alveolar lining layer
Assists in formation of tubular myelin
Interferes with the intermolecular forces of water
Organizes lamellar body structure
Promotes lamellar body exocytosis from AT2 cells

SP-C Increases adsorption of phospholipids to the air–liquid interface
Inserts into the monolayer and squeezes out only at high surface tension
Involved in organization and packaging of phospholipid membranes in lamellar bodies
Stimulates surfactant recycling by AT2 cells

ABCA3 Regulates lamellar body formation by moving cholesterol and phospholipids across lamellar
body membranes

Involved with SP-B and SP-C processing

Thyroid transcription factor 1 (also known
as NKX2-1)

Controls expression of genes coding for SP-A, SP-B, SP-C, and ABCA3

Definition of abbreviations: ABCA3=ATP-binding cassette transporter A3; AT2= alveolar type II; SP= surfactant protein.
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fibrosis (83–85). SP-A mutations generate
ER stress, and surfactant obtained from
SP-A2/2 mice has increased minimum
surface tension at low phospholipid
concentrations (85, 86).

SP-B
The pathological findings in lungs of
patients with SP-B mutations include
alveolar proteinosis, desquamative
interstitial pneumonia (DIP), enlarged AT2
cells, and fibroblast proliferation. Patients
and mice with SP-B variants have
abnormal-appearing LBs, complete
absence or reduced amounts of SP-B in the
BALF and lung tissue, an altered
phospholipid profile, and interruption in
processing the precursor to SP-C, and their
BALF has a reduced ability to decrease
surface tension (87–92).

SP-C
Mutations in the SP-C gene have been
reported to be associated with diffuse
alveolar damage, nonspecific interstitial
pneumonia (NSIP), DIP, UIP, AT2 cell
hyperplasia, and honeycombing (87).
SP-C mutations can cause misfolding and
accumulation of the SP-C precursor that
results in ER stress (93–96), reduced or no
SP-C in the alveolar space, abnormal
hysteresis, and abnormal surface tension
lowering (97–99). Experimentally
regulated expression of an SP-C mutation
results in acute alveolar inflammation
followed by fibrosis without evidence of
AT2 cell apoptosis, suggesting that
abnormalities in surfactant may also
cause fibrosis in the absence of ER
stress (95).

ABCA3
Patients with ABCA3 mutations present
with alveolar proteinosis, DIP, UIP, or NSIP.
Phospholipid profiles are abnormal with
decreased phosphatidylcholine as well as
decreased or absent mature SP-B and SP-C
in the pulmonary interstitium and BALF,
and minimum surface tension is increased
(100–107).

Thyroid Transcription Factor 1
(NKX2-1)
Patients with mutations in NKX2-1
(thyroid transcription factor 1) develop
respiratory failure, alveolar proteinosis,
and fibrosis as part of the brain-thyroid-
lung syndrome. Promoter activity for
SP-A, SP-B, SP-C, and ABCA3 in AT2

cells is altered by NKX2-1 mutations
(108–114).

Telomeres
Chromosomes normally shorten with each
cell division, ultimately activating a DNA
damage response that leads to cell
senescence or death. Telomeres are located
on the ends of the chromosomes and limit
the rate of shortening. Telomerase helps
maintain telomeres, and mutations in
telomerase genes result in more rapid
telomere shortening. Telomerase mutations
are found in 8–30% of patients with a family
history of IPF, in 1–25% of patients with
sporadic IPF, and in 12% of patients with
the pulmonary fibrosis associated with
rheumatoid arthritis (115–119). They have
also been associated with NSIP, acute
interstitial pneumonitis, and other subtypes
of pulmonary fibrosis (119). Approximately
20% of patients with dyskeratosis congenita
(a disease caused by telomerase mutations)
develop pulmonary fibrosis (120).
Telomerase activity falls 72 hours after
bleomycin administration, linking short
telomeres to the fibrosis that develops in
this model (121). Waisberg and colleagues
(9) suggested that abnormal telomerase
expression reduces the number of AT2
cells, which, in turn, reduces surfactant
production, leading to alveolar collapse and
fibrosis. Alder and colleagues (122)
demonstrated that telomere dysfunction
induced AT2 cell senescence.

MUC5B
MUC5AC and MUC5B are the major
mucins in airway secretions. MUC5B is
produced by submucosal glands and goblet
cells in the tracheal and bronchiolar
epithelia as well as by AT2 cells, and
its production is enhanced in patients
with pulmonary fibrosis. MUC5B
overproduction as a result of a common
variant (rs35705950) in the promoter of the
gene accounts for approximately 30% of
patients who develop IPF and is also
associated with the interstitial fibrosis seen
in rheumatoid arthritis (123, 124). Injection
of gastric mucins or recombinant MUC5B
into alveoli raises surface tension (125), as
was previously theorized by van Moorsel
and colleagues (126). Additional research is
needed to understand whether the gain-of-
function promotor variant that increases
expression of MUC5B in bronchioles alters
surfactant properties in the alveolus.

Surfactant and/or AT2 Cell
Abnormalities in Models of
Pulmonary Fibrosis

Bleomycin
Several groups have documented changes in
surfactant-associated phospholipids and
proteins that correlate with the changes in
physiology occurring after bleomycin
(127–132). Marked downregulation of SP-B
and SP-C occurs as early as 2 days after
bleomycin administration, persists during
the fibrotic period, and correlates with the
reduction in the surface-active properties of
surfactant (128, 129). The inflammatory
response and/or the volutrauma that occurs
after bleomycin involves upregulation of
TGF-b1 and TNF-a, both of which
downregulate SP-B and SP-C expression
and increase surface tension (132–134).
Surfactant abnormalities seem to be a
required element for bleomycin-induced
fibrosis because stimulating AT2 cell
proliferation with keratinocyte growth
factor or restoring SP-C expression with a
histone deacetylase inhibitor protects
against the fibrosis (135–139).

Radiation
LBs in AT2 cells are markedly depleted 1–24
hours after a single dose of radiation. At 7
days, AT2 cell hypertrophy occurs with
increases in the number of LBs and signs of
AT2 cell degeneration (i.e., vacuolation,
mitochondrial swelling, and distention of
the ER). Sloughing of the cells into the
alveoli occurs up to 1 month later together
with reduced surfactant turnover
(140–143). The early loss and subsequent
increase in LBs correlates with the amount
of surfactant phospholipids in the BALF
and with the synthesis and metabolism of
the phospholipids (141, 144). In humans,
phosphatidylcholine concentrations
decline, but the two-phase response may
not occur (145, 146). BALF obtained from
humans approximately 1–4 months after
irradiation has altered concentrations of
various surfactant phospholipid
components and markedly reduced the
ability to lower surface tension (144, 145,
147). At 6–12 months, atelectasis develops
(144).

TGF-b1
Adenoviral transfer of TGF-b1 via the
airway results in gene expression that peaks
at 7 days, at which time decreased
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compliance is observed together with
increased surface tension, reduced SP-B
and SP-C expression, marked alveolar
collapse, and increased alveolar size
heterogeneity without an increase in
collagen. These changes are followed by
progressive fibrosis that continues through
at least 9 weeks (135, 148, 149).
Intratracheal administration of surfactant
at 3 and 6 days reduces these changes.

Amiodarone
Amiodarone causes pulmonary fibrosis,
interstitial inflammation, and AT2 cell
hyperplasia. SP-B and SP-C accumulate in
the AT2 cells and alveoli, and ER stress and
autophagy-dependent AT2 cell apoptosis
occur (150, 151,). Amiodarone also results
in collapse induration in association with
surfactant dysfunction that is manifested by
an increase in minimum surface tension
(152).

Alveolar Micromechanics in
Pulmonary Fibrosis

Cyclical airspace opening and closing with
ventilation can occur in airways and/or
alveoli. Because epithelial damage in the
airways is not generally seen in pulmonary
fibrosis, atelectrauma affecting the airways
would seem to be unlikely. Atelectrauma
affecting alveoli, however, has been implied
by many investigators. Katzenstein (7)
indicated that partial alveolar collapse was
more prominent than collapse of the entire
alveolus. Burkhardt’s schematic (4, 22)
indicated that reversible alveolar collapse
occurred before the time it became
permanent. Crouch (14) noted that alveolar
collapse could be transient or permanent,
and Leslie (19) indicated that collapsed
alveoli were pulled open during inhalation.
In a single study in bleomycin-treated rats,
however, only minimal alveolar recruitment
and derecruitment occurred because the
transpulmonary pressures generated did
not reach the threshold necessary to reopen
collapsed alveoli during tidal breathing
(20). We have elected to model the strain
resulting from permanent alveolar collapse
(i.e., volutrauma) rather than the stress
from atelectrauma, because the latter would
vary with ventilation, would potentially be
related to the flow and duration of
inhalation, and would be inversely related
to the opening pressure of any given
alveolus. In addition, Yen and colleagues

(18) noted that the major micromechanical
alteration occurring in a ventilator-induced
model of lung injury was strain affecting
the epithelial cells in alveoli adjacent to
those that were permanently collapsed.

Collapse of one alveolus will distend
the neighboring alveoli via tractional
forces resulting from parenchymal
interdependence. Mead and colleagues
(153) calculated that a fully collapsed
alveolus could increase distending pressure
in adjacent patent alveoli fivefold. This
phenomenon is well documented at the
alveolar/septal scale in isolated lungs in
response to alveolar flooding (154), at
greater scale in fixed tissue as described
above, and in the increased VA and VA

variability measured in animal models of
pulmonary fibrosis (10, 155–157).

Finite element simulations employing
an idealized network of alveoli (155) show
that the stiffening of a single central
alveolus, or a cluster of alveoli, without
reducing VA intensifies septal wall strain in
the remaining patent alveoli. Because the
morphology of pulmonary fibrosis is
characterized by alveolar collapse, where
VA approaches zero, we have included finite
element simulations of an idealized alveolar
network that is based on a previously
published model (157) and described in the
online supplement (Figure E2). The model
shows that a single collapsed and stiffened
alveolus, representing an atelectatic
alveolus, raises the maximum septal strain
(emax) at FRC to nearly equal the septal
strain predicted at TLC in the open
portions of the normal lung.

Expanding the number of atelectatic
alveoli results in further increases in emax.
Figures 2C–2E show that the strain increase
occurs in a localized area covering only a
few alveoli, and this region grows with the
size of the atelectatic region, indicating that
both the magnitude and area of increased
strain expand during the progression of
fibrosis.

It is important to note that the alveoli
adjacent to the collapsed alveolus in
Figure 2C have an average area that is 13%
less than that of the open alveoli farther
from the collapsed alveolus. Likewise,
although the alveoli adjacent to the
collapsed region in Figures 2D and 2E have
areas 15% and 33% smaller, respectively,
than those of the far-field alveoli, it is the
strain on the alveolar septa, not the VA, that
causes overdistention-induced damage.
Because the tethering-induced strains in

these adjacent septa at FRC are greater than
septal strains predicted at TLC in the open
lung, it is likely that the basement
membrane is distended and that the
increased length is not due solely to the
unfolding of septal pleats (158). In vitro
studies indicate that this degree of strain
will cause inflammation (159), increased
permeability (160), epithelial–mesenchymal
transition (32), and cell death (161).

In simulated networks in which a
contiguous pathway of strained septa is
present, force transmission can occur over
longer distances (157), which is an
important consideration because the
fibroblast foci seen in pulmonary fibrosis
may form an interconnected network (162)
that may facilitate long-range force
coupling. Although there are conflicting
data on this point (163), if the fibroblastic
foci do not form an interconnected
network, then transmission of force
through the stiffened foci will still extend
through large regions of the parenchyma.

Speculations

To our knowledge, there are no data
describing the extent of lung strain needed
to cause pulmonary fibrosis. Alveoli can
increase in size without increasing strain
because of septal unfolding up to perhaps
80% of TLC. Above that point, however,
further expansion stretches the basement
membrane and increases strain. Because
epithelial injury is known to increase with
the frequency and amplitude of the stretch,
we would reason that the relationship
between strain and fibrosis could be
represented as follows: pulmonary
fibrosis� strain $ f $ t, with strain having to
be above the threshold that initiates
mechanotransduction and f and t
representing the frequency and duration,
respectively, over which the strain is
applied. Because it takes years, if not
decades, for fibrosis to develop, we would
also reason that only a minimal increase in
strain would be sufficient to cause fibrosis
because it would be applied for so long. Our
model (Figure 2) suggests that, in the
setting of a single atelectatic alveolus, the
septal strain in adjacent alveoli increases
30% when the lung is at its normal resting
volume. When seven alveoli are atelectatic,
septal strain in adjacent alveoli increases
50% at resting volume. This implies that
strain would be increased at normal
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transpulmonary pressures in the setting of
collapse induration.

The pathophysiology we propose
suggests that, other than preventing or
reducing the initial AT2 cell injury, restoring
surface tension with exogenous surfactant
might be a beneficial intervention, as was
first suggested by Katzenstein (7) and
subsequently by others (47, 138).
Exogenous surfactant would not be able to
reverse permanent alveolar collapse and,
accordingly, would have little to no effect
on volutrauma-related strain caused by
existing collapse induration and would not
be able to restore denuded epithelium in
these alveoli. Surfactant administration
could, however, slow progression of the

fibrosis by reducing atelectrauma-related
strain and, in turn, interdependence-
induced volutrauma in adjacent alveoli
(Figure 2). In addition, and perhaps more
important, recent advances in defining
genetic risk factors for pulmonary fibrosis
would allow surfactant to be administered
in prophylactic fashion to at-risk patients
before development of extensive alveolar
collapse or fibrosis (164). Finding a
practical and safe way to accomplish what
would seemingly have to be lifelong
administration in spontaneously breathing
patients would be challenging, but
nebulized surfactant has recently shown
some acute benefits in laboratory studies
and neonates.

The pathophysiology described also
leads to the question whether patients with
pulmonary fibrosis should be instructed
to avoid large inhalations or large
transpulmonary pressure swings as would
occur during vigorous exercise. Doing so
could reduce the stress associated with
atelectrauma and the strain associated with
volutrauma, akin to the recommendation
that patients with acute respiratory distress
syndrome be treated with low VT, because
we suggest that the pathogenesis of VILI in
the two conditions is the same (17, 18).
Stretching the epithelium is the strongest
stimulus to surfactant secretion by AT2
cells, however, such that large breaths could
also reduce atelectrauma and prevent newly
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Figure 2. Maximum alveolar septal strain (emax) increases with alveolar collapse. (A) The undeformed finite element domain represents the linear elastic
alveolar network at FRC. (B) Tripling the lung volume above the resting state, which we equate to a deep inspiration (e.g., TLC), corresponds to a cross-
sectional area that is 32/3 times that at FRC, assuming that the expansion of the lung is isotropic. (F) Stiffening a single alveolus by a factor of 100 to
simulate flooding (gray) does not affect strain at FRC and causes a moderate increase at TLC. (C and F) A collapsed and stiffened (i.e., atelectatic) alveolus
is represented by reducing the resting area by 90% and increasing the elastic modulus 100-fold (C) to yield an emax at FRC that is approximately equal to
emax at TLC in the open network (F). (D) Inflating the network to TLC with a single atelectatic alveolus yields a 2.5-fold increase in emax compared with the
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The color bar indicates strain in the alveolar septa shown in A–E.
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collapsed alveoli from becoming
permanently collapsed. The net effect of
large tidal excursions could perhaps depend
on the relative contribution of the
mechanical stress versus strain in any given
individual. Another factor to consider with
regard to advising patients is that
pulmonary fibrosis progresses over years, if
not decades, and patients spend only a
limited amount of time each day or week
doing vigorous exercise. Finally, the
physiological and psychological benefits of
regular exercise, together with the fact that
the pathophysiology described is currently
an untested hypothesis that lacks even a

single study demonstrating proof of
concept, lead us to conclude that making
any recommendation regarding limiting the
frequency or intensity of exercise is
premature.

Conclusions

The existing paradigm explaining the
pathophysiology of pulmonary fibrosis
involves AT2 cell injury as an early event
with subsequent recurrent injury (and
repair) leading to progressive fibrosis. We
suggest that surfactant abnormalities occur

as a direct effect of various risk factors
and/or genetic variations associated with
pulmonary fibrosis, or indirectly as a result
of AT2 cell injury. These surfactant
abnormalities and potentially other
environmental, genetic, and pathogenic
features of pulmonary fibrosis cause
alveolar collapse, and the resulting stress
and strain of ongoing ventilation
(i.e., VILI) can provide a unifying
explanation for the progressive injury that
occurs. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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